Problem 3.25

The Hamiltonian for a certain two-level system is

$$
\hat{H}=\epsilon(|1\rangle\langle 1|-|2\rangle\langle 2|+|1\rangle\langle 2|+|2\rangle\langle 1|),
$$

where $|1\rangle,|2\rangle$ is an orthonormal basis and ϵ is a number with the dimensions of energy. Find its eigenvalues and eigenvectors (as linear combinations of $|1\rangle$ and $|2\rangle$. What is the matrix H representing \hat{H} with respect to this basis?

Solution

As shown at the top of page 469,

$$
\begin{aligned}
\hat{H}|1\rangle & =H_{11}|1\rangle+H_{21}|2\rangle \\
\hat{H}|2\rangle & =H_{12}|1\rangle+H_{22}|2\rangle
\end{aligned}
$$

apply the Hamiltonian operator \hat{H} to each of the basis vectors to determine the elements of the Hamiltonian matrix H .

$$
\begin{aligned}
\hat{H}|1\rangle & =\epsilon(|1\rangle\langle 1|-|2\rangle\langle 2|+|1\rangle\langle 2|+|2\rangle\langle 1|)|1\rangle \\
& =\epsilon|1\rangle\langle 1 \mid 1\rangle-\epsilon|2\rangle\langle 2 \mid 1\rangle+\epsilon|1\rangle\langle 2 \mid 1\rangle+\epsilon|2\rangle\langle 1 \mid 1\rangle \\
& =\epsilon|1\rangle(1)-\epsilon|2\rangle(0)+\epsilon|1\rangle(0)+\epsilon|2\rangle(1) \\
& =\epsilon|1\rangle+\epsilon|2\rangle
\end{aligned}
$$

Note that since the basis is orthonormal, $\langle 1 \mid 1\rangle=\langle 2 \mid 2\rangle=1$ and $\langle 1 \mid 2\rangle=\langle 2 \mid 1\rangle=0$.

$$
\begin{aligned}
\hat{H}|2\rangle & =\epsilon(|1\rangle\langle 1|-|2\rangle\langle 2|+|1\rangle\langle 2|+|2\rangle\langle 1|)|2\rangle \\
& =\epsilon|1\rangle\langle 1 \mid 2\rangle-\epsilon|2\rangle\langle 2 \mid 2\rangle+\epsilon|1\rangle\langle 2 \mid 2\rangle+\epsilon|2\rangle\langle 1 \mid 2\rangle \\
& =\epsilon|1\rangle(0)-\epsilon|2\rangle(1)+\epsilon|1\rangle(1)+\epsilon|2\rangle(0) \\
& =\epsilon|1\rangle-\epsilon|2\rangle
\end{aligned}
$$

Therefore, the Hamiltonian matrix is

$$
\mathbf{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)=\left(\begin{array}{rr}
\epsilon & \epsilon \\
\epsilon & -\epsilon
\end{array}\right) .
$$

Now consider the eigenvalue problem for the Hamiltonian operator, the TISE.

$$
\hat{H}|\psi\rangle=E|\psi\rangle
$$

With respect to the $|1\rangle,|2\rangle$ basis, it becomes

$$
\begin{gather*}
\mathrm{H}|\psi\rangle=E|\psi\rangle \\
\mathrm{H}|\psi\rangle-E|\psi\rangle=0 \\
(\mathrm{H}-E \mathrm{I})|\psi\rangle=0 . \tag{1}
\end{gather*}
$$

Since $|\psi\rangle$ can't be the zero vector, the matrix in parentheses is singular.

$$
\begin{gathered}
\operatorname{det}(\mathrm{H}-E \mathrm{I})=0 \\
\left|\begin{array}{cc}
\epsilon-E & \epsilon \\
\epsilon & -\epsilon-E
\end{array}\right|=0 \\
(\epsilon-E)(-\epsilon-E)-\epsilon^{2}=0 \\
E^{2}-2 \epsilon^{2}=0 \\
E= \pm \sqrt{2} \epsilon
\end{gathered}
$$

Therefore, the eigenvalues of H are $E_{-}=-\sqrt{2} \epsilon$ and $E_{+}=\sqrt{2} \epsilon$. Plug them into equation (1) to determine the corresponding eigenvectors.

$$
\left.\begin{array}{rcr}
\left(\mathrm{H}-E_{-} \mathrm{I}\right)\left|\psi_{-}\right\rangle=0 & \left(\mathrm{H}-E_{+} \mathrm{I}\right)\left|\psi_{+}\right\rangle=0 \\
\left(\begin{array}{c}
\epsilon(\sqrt{2}+1) \\
\epsilon
\end{array} \epsilon^{\epsilon}(\sqrt{2}-1)\right.
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=\binom{0}{0} \quad\left(\begin{array}{cc}
-\epsilon(\sqrt{2}-1) & \epsilon \\
\epsilon & -\epsilon(\sqrt{2}+1)
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=\binom{0}{0}
$$

Solve either equation for either ψ_{1} or ψ_{2}.

$$
\psi_{2}=-(\sqrt{2}+1) \psi_{1} \quad \psi_{2}=(\sqrt{2}-1) \psi_{1}
$$

As a result,
$\left|\psi_{-}\right\rangle=\binom{\psi_{1}}{\psi_{2}}=\binom{\psi_{1}}{-(\sqrt{2}+1) \psi_{1}}=\psi_{1}\binom{1}{-\sqrt{2}-1} \quad\left|\psi_{+}\right\rangle=\binom{\psi_{1}}{\psi_{2}}=\binom{\psi_{1}}{(\sqrt{2}-1) \psi_{1}}=\psi_{1}\binom{1}{\sqrt{2}-1}$,
where ψ_{1} is an arbitrary constant. For the eigenvectors to be physically relevant, ψ_{1} has to be chosen so that

$$
\begin{array}{rr}
\psi_{1}^{2}\left[1^{2}+(-\sqrt{2}-1)^{2}\right]=1 & \psi_{1}^{2}\left[1^{2}+(\sqrt{2}-1)^{2}\right]=1 \\
\psi_{1}= \pm \frac{1}{\sqrt{2(2+\sqrt{2})}} & \psi_{1}= \pm \frac{1}{\sqrt{2(2-\sqrt{2})}}
\end{array}
$$

Therefore, the normalized eigenvectors associated with $E_{-}=-\sqrt{2} \epsilon$ and $E_{+}=\sqrt{2} \epsilon$ are

$$
\left|\psi_{-}\right\rangle=\frac{1}{\sqrt{2(2+\sqrt{2})}}\binom{1}{-\sqrt{2}-1}=\frac{1}{\sqrt{2(2+\sqrt{2})}}[|1\rangle+(-\sqrt{2}-1)|2\rangle]
$$

and

$$
\left|\psi_{+}\right\rangle=\frac{1}{\sqrt{2(2-\sqrt{2})}}\binom{1}{\sqrt{2}-1}=\frac{1}{\sqrt{2(2-\sqrt{2})}}[|1\rangle+(\sqrt{2}-1)|2\rangle],
$$

respectively.

